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Abstract 
 

Monitoring and information services form a key 
component of a distributed system, or Grid. A 
quantitative study of such services can aid in 
understanding the performance limitations, advise in 
the deployment of the monitoring system, and help 
evaluate future development work. To this end, we 
examined the performance of the Globus Toolkit® 
Monitoring and Discovery Service (MDS2) by 
instrumenting its main services using NetLogger. Our 
study shows a strong advantage to caching or 
prefetching the data, as well as the need to have 
primary components at well-connected sites.  
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1. Introduction 
 

Grid platforms[3] depend on monitoring and 
information services to support the discovery and 
monitoring of the distributed resources for various 
tasks. Indepth studies are needed to understand any 
performance limitations in common settings.  

In our previous work[13], we investigated the 
behaviors of the Globus Toolkit Monitoring and 
Discovery Service (MDS2)[2][9], the most common 
monitoring system currently used for production Grids, 
with the focus on analyzing the end-to-end 
performance of a user request at a very coarse grain. 
To better understand the unexplained behaviors we 
saw in that study, in this work we exam MDS behavior 
at a finer granularity by using NetLogger[11][12] 
technologies to instrument both MDS2 server and 
client codes and running experiments to evaluate the 
effect of a large number of concurrent users accessing 
the different services. 
 
2. MDS2 
 

The Monitoring and Discovery Service (MDS2)[2] 
[9] is the Grid information service used in the Globus 
Toolkit[6]. MDS2, built on top of the Lightweight 
Directory Access Protocol (LDAP) (v3)[10], is used 
primarily to address the resource selection problem, 
namely, how a user identifies the host or set of hosts 
on which to run an application. MDS2 provides a 
uniform, flexible interface to data collected by lower-
level information providers. It has a decentralized 
structure that allows it to scale, and it can handle static 
or 

Table 1: Definitions of the seven phases of an MDS2 query. 
 

Phase Name Phase Definition Instrumentation 
Location 

Client-Connect Stage for MDS client program to open a connection to 
MDS server Client side 

Client-Bind Stage for MDS client to authenticate to MDS server Client side 
Server-InitSearch Stage for MDS server performs search initialization Server side 

Server-SearchIndex Stage for MDS server search indexes for entries Server side 

Server-Invoking Stage for MDS server to invoke reported information 
providers or GRIS to generate fresh data Server side 
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Server-GenResult Stage for MDS server to build the results Server side 
Client-EndConnect Stage for MDS client to receive results and disconnect  Client side 

 
dynamic data.  

MDS2 has a hierarchical structure that consists of 
three main components. A Grid Index Information 
Service (GIIS) provides an aggregate directory of 
lower-level data. A Grid Resource Information Service 
(GRIS) runs on a resource and acts as a modular 
content gateway for a resource. Information providers 
(IPs) interface from any data collection service and 
then talk to a GRIS. Each service registers with high-
level services using a soft-state protocol that allows 
dynamic cleaning of dead resources. Each level also 
has caching to minimize the transfer of unstale data 
and lessen network overhead. 

We use NetLogger to instrument both the MDS2 
server and client codes. NetLogger[11][12] is a toolkit 
developed by Lawrence Berkley National Laboratory 
to monitor, under actual operating conditions, the 
behavior of elements of a complex distributed system 
in order to determine exactly where time is spent 
within such a system and identify the performance 
bottlenecks. With NetLogger, the components of a 
distributed system can be modified to produce time-
stamped logs of “interesting” events at all the critical 
points of the system, which are then correlated to allow 
the characterization of the performance of all aspects 
of the system in detail. To instrument an application to 
produce event logs, the application developer inserts 
calls to the NetLogger API at all the critical points in 
the code, then links the application with the NetLogger 
library. NetLogger is a lightweight tool and adds little 
overhead to existing program when used carefully[11]. 

By adding NetLogger calls we broke the end-to-end 
path of a MDS2 request into seven phases: (1) Client-
Connect, (2) Client-Bind, (3) Server-InitSearch, (4) 
Server-SearchIndex, (5) Server-Invoking, (6) Server-
GenResult, and (7) Client-EndConnect, as shown in 
Table 1. Phases 1, 2, and 7 constitute the MDS2 client 
side components, and phases 3–6 constitute the server-

side components. A NetLogger view of the behavior of 
a MDS v2.4 GRIS without data caching accessed by 
10 concurrent users is given in Figure 1. 

 
3. MDS2 Performance Results 
 

In this section, we discuss the experiments results 
and evaluations for MDS2. First we briefly talk about 
experimental setup, and then we describe the metrics 
we used in the experiments. Finally we present the 
experiments results and analysis. 

 
3.1. Experimental Setup 
 

We ran our experiments between two sites: the 
Lucky testbed at Argonne National Laboratory (ANL), 
which provided the MDS2 server-side services, and a 
testbed at the University of Chicago (UC), which 
provided the client-side services. 

The Lucky testbed includes seven Linux machines 
with hostnames lucky{0,1,3,..,7}.mcs.anl (lucky2 was 
unavailable during the experiments) and a shared file 
system on a 100 Mbps LAN. Each machine is 
equipped with two 1133 MHz Intel PIII CPUs (with a 
512 KB cache per CPU) and 512 MB RAM. Lucky0 
and lucky6 run Linux kernel 2.4.10 and the rest run 
kernel 2.4.19. 

The UC client-side hosts are a cluster of 20 Linux 
machines with a shared file system on a 100 Mbps 
LAN. Fifteen of them were equipped with a 1208 MHz 
CPU and 256 MB RAM, while the rest had a slightly 
slower CPU (but at least 756 MHz), also with 256 MB 
RAM. Each machine runs Linux kernel 2.4.17 or a 
higher version. 
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Figure 1: The seven phases of an MDS2 query, as shown using NetLogger instrumentation. 

 
The bandwidth between ANL and UC is around 55 

Mbits per sec on average (as measured by Iperf[8]), 
and the latency (Round-Trip Time) is approximately 
2.3 msec on average. 

We deployed MDS 2.2 and 2.4 on both sites and 
used NetLogger v2.0.13 to instrument the server and 
client codes of both versions. To synchronize the 
clock, we ran NTP 4.1.2 at both the Lucky testbed and 
UC client hosts.  

In our experiments, we simulated up to 600 users 
querying the MDS2 services simultaneously for 10 
minutes, with a waiting period of one second between 
receiving a request response and issuing the next 
response, by running individual user processes 
(scripts) on client machines. We selected 600 as the 
upper bound since the average number of concurrent 
users for MDS2 services in real world is much smaller. 
We evenly distributed the simulated users to all twenty 
machines to balance the load.  

We used Ganglia[5], a cluster monitoring system 
developed by UC Berkeley, to collect the performance 
data at five-second intervals. The values reported in 
each experiment are the average over all the values 
recorded during a 10-minute time span. We performed 
all the experiments in a LAN setting to ensure that the 
performance of the service was affected primarily by 
the service components and not by other external 
factors. 

 
 
 
 

3.2. Performance Metrics 
 

The performance metrics we used in our work 
include throughput, observed response time (ORT), 
request processing time (RPT), load1, and CPU-load.  

Throughput is defined as the average number of 
requests (or queries) processed by a MDS2 service 
component per second. 

ORT, equivalent to the metric response time used in 
our previous work[13], denotes the average amount of 
time (in seconds) from the point a user sends out a 
request till the user gets the response back. It is 
calculated at the client side. RPT is defined as the 
average time spent at the server side for a MDS2 
service to handle a user request. ORT is always greater 
than RPT, and their relationship can be represented by 

 
ORT = TClient-Connect + TClient-Bind + RPT + TClient-EndConnect   (1) 
 
where TClient-Connect, TClient-Bind and TClient-EndConnect denote 
the time spent on the Client-Connect phrase, the 
Client-Bind phrase and the Client-EndConnect phase 
respectively. As shown in Table 1, the server side 
consists of four phases that timewise result in RPT. 
Therefore, Equation 1 can be expanded to 
 
ORT = TClient-Connect + TClient-Bind + RPT + TClient-EndConnect         
RPT= TServer-InitSearch + TServer-SearchIndex + TServer-Invoking+  
          TServer-GenResult                                                              (2) 
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We also used two load metrics for the experiments, 
a one-minute load average (load1) and CPU-load.  The 
metricLoad1 is the average number of processes in the 
ready queue waiting to run over the last minute 
measured by the Ganglia metric “load_one”. Usually 
the system is overloaded if the load1 value is greater 
than 3. CPU-load indicates the percentage of the CPU 
cycles spent in user mode and system mode, which we 
measured by averaging the sum of cpu_user and 
cpu_system recorded by Ganglia. CPU-load may be 
high while load1 is low if a machine is running a small 
number of compute-intensive applications. CPU-load 
may be low while load1 is high if the same machine is 
trying to run a large number of applications that are 
blocking on I/O. 
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 Figure 2: MDS 2.2 and 2.4 GRIS Throughput vs. 
No. of Concurrent Users 
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 Figure 3: MDS 2.4 GRIS ORT and RPT vs. No. of 
Concurrent Users 

 Figure 4: MDS 2.4 GRIS Host Load1 vs. No. of 
Concurrent Users 
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 Figure 5: MDS 2.4 GRIS Host CPU Load vs. No. 
of Concurrent Users 
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3.3. MDS2 Information Server Scalability 
 

As  the  information  server of MDS2, the GRIS can 

be heavily queried by users. Therefore, in our first set 
of experiments we evaluated its performance when it is 
accessed by a large number of users concurrently.  

For each MDS2 version, we ran a GRIS on lucky7, 
which had ten information providers reporting to it. 
We examined two different scenarios: the GRIS 
always caching the data from the information providers 
and the GRIS never caching the data. Our intention 
was to understand the GRIS performances under two 
extreme conditions, in order to help us estimate the 
performance of the average case, which is somewhere 
between these two. Each query requested all the data 
elements in the GRIS directory, and this data was 
generated by all the reported information providers. 
The average size of requested data was less than 10 
KB. 
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Figures 2–7 show the performance results of v2.2 
and v2.4 MDS2 GRISes, for two scenarios described 
above. The end-to-end performance results are 
presented in Figures 2–5 (Figures 2 compares v2.4 
GRIS throughput performance with v2.2 GRIS while 
the rest figures present v2.4 results only), while 
Figures 6 and 7 show the NetLogger instrumentation 
results about the performance of the seven phases 
constituting the end-to-end path.  

The results show that a GRIS, if configured with 
data in cache, can achieve a much higher scalability 
and end-to-end performance (throughput performance 
in Figure 2 and ORT performance Figure 3, 
respectively) than one without data caching, as one 
would expect. Comparing the performance results of 
the divided phases of end-to-end path for each scenario 
(shown in Figures 6 and 7), we found that the RPT  
occupies more than 90% of the ORT when a GRIS 
doesn’t cache data. The much longer delay in the 
Server-Invoking phase is the source of the degraded 

performance. Since Server-Invoking is the stage in 
which a GRIS invokes the reported information 
providers to get the data, we believe the delay is 
caused by the fact that the cost to execute information 
providers can be expensive. To make the delay even 
worse, concurrent queries asking information from the 
same information provider must compete with each 
other, since a GRIS can only serve them serially.  
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Figure 6: MDS2 GRIS (data in cache) Phases Performance vs. No. of Concurrent Users 
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(1) MDS v2.2 GRIS (data not in cache)  

Figure 7: MDS2 GRIS (data not in cache) Phases Performance vs. No. of Concurrent Users 
 

For the GRIS with data in cache, the ORT did not 
exceed 3 seconds, compared with a maximum ORT for 
a GRIS without data caching of 190 seconds. The 
reason is a GRIS can serve the concurrent queries with 
data in its cache rather than invoking low-level 
information providers, and all cached data can reside 
in memory to further improve the efficiency. Figure 6 
confirms the Server-Invoking phase, and the RPT is no 
longer the source of performance bottleneck. However, 
we observe that the throughput did not follow a 
constantly increasing rate after the point of 200 
concurrent users for both versions of GRIS (Figure 2). 
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This effect is the result of the longer delay of the 
Client-Connect time (Figure 6). Unlike the GRIS 
without data in cache, the performance depends on the 
Client-Connect time – the sum of Client-Connect time 
and Client-EndConnect time is about 95% of ORT. 
Many factors may attribute to the delay of Client-
Connect, for example, network limitations at the server 
side, the operating system’s scheduling delay, or the 
constraint of the LDAP protocol used by MDS2.  

Generally, a GRIS experienced a higher load (load1 
results in Figure 4 and CPU_load results in Figure 5) 
with the increasing number of users no matter it caches 
data or not for each version. This is because more 
concurrent queries contest for CPU to acquire the 
service of the GRIS. However, the machine hosting a 
GRIS without data in cache presents a lower load than 
hosting a GRIS that caches data, indicating that many 
of the processes were blocked waiting for resources in 
the former case. 

From the performance results, we also observed 
differences between v2.4 GRIS and v2.2 GRIS. Figure 
7 shows v2.4 GRIS outperforms v2.2 GRIS in the 
efficiency of processing requests. The reason for the 
improved performance is that v2.4 GRIS spends less 
time on the Server-SearchIndex phase than does v2.2 
GRIS, especially with a large number of users. This is 
likely due to better memory use in v2.4. We conclude 
that the overhead for the MDS2 GRIS can be 
substantially reduced by data caching since invoking 
the information providers to serve each query can be 
expensive We suggest that, in order to provide good 
quality of service, a GRIS should always cache the 
data that is static or is expensive to calculate or fetch. 
Moreover, a GRIS should support fewer than a 100 
users if it has to provide fresh data without data 
caching for each query. 
 
3.4. MDS2 Directory Server Scalability  
 

The second functionality of MDS2 we tested was 
the performance of GIIS as a directory server with the 
number of concurrent users. 

We ran each version of MDS2 GIIS on lucky1 with 
a GRIS (containing information from 10 information 
providers) on each of lucky3–7 registered to it. To 
analyze only the directory functionality of the GIIS 
and not its information serving capacity as an 
aggregation server, we set the cachettl (cache element 
time to live) parameter to a value larger than 600 
seconds to make sure the data was always in the cache 
during each round of the experiments. Each user 
queries for all the data elements from the GIIS 
directory. This means the average data size a query 

expects is approximately five times bigger than that in 
the GRIS experiments, about 50 KB.  

Figures 8–12 show the performance results of v2.2 
and v2.4 MDS2 GIISes with data in their caches. The 
end-to-end performance results are presented in 
Figures 8–11, while Figure 12 shows the phase 
performance instrumented by NetLogger.  

With data in cache, MDS2 GIIS scales well and 
exhibits a high throughput and low ORT with respect 
to the increasing number of users. These results are 
due to the fact MDS2 GIIS is very efficient in 
processing the queries at the server side (the RPT was 
always smaller than 0.2 sec, shown in Figure 12) since 
it does not need to communicate with all the registered, 
lower-level GRIS to generate the fresh data. We can 
expect the communication expense is nontrivial, since 
GIIS and the registered GRIS run on different 
machines. 

The NetLogger instrumentation results shown in 
Figure 12 also illustrate that the majority of ORT is 
spent on the client side’s Client-Connect phase for 
MDS2 GIIS. More concurrent users accessing the 
same GIIS simply means each user will experience a 
longer latency in building the connection to the GIIS 
service on average. Since MDS2 GIIS and GRIS are 
constructed on nearly the same underlying protocols, 
we attribute the longer delay of Client-Connect time to 
the same reason we gave to GRIS. 

The performance difference of different versions of 
MDS2 GIIS is also reflected in the results.  The v2.4 
GIIS shows a higher throughput (Figure 8) and lower 
ORT (Figure 9) than does the v2.2 GIIS when they are 
accessed by a same number of users. The probable 
explanation is better use of memory. 
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Though MDS2 GIIS with data in cache can be 
treated similarly to a GRIS with data in cache, their 
absolute performance is quite different. When accessed 
by the same number of users, a GRIS is more efficient 
in serving queries than is the same version of GIIS 
because the GIIS has many more entries and the 
searching takes longer. 

From the above experiment we see that using the 
MDS2 GIIS as a directory server with data caching is a 
good choice.  It can provide good quality of service if 
serving fewer than 400 users concurrently. With a 
larger number of users, however, one should duplicate 
the GIIS in order to keep the quality of service. 
 
4. Conclusion 
 

In this paper, we have investigated the scalability 
and performance of the Globus Toolkit MDS2. We 
used NetLogger to instrument the MDS2 codes at both 
the server side and client side, and we broke the end-
to-end path of a user query into seven phases to 
diagnosis the performance bottlenecks. Our work 
shows that, when accessed by a large number of 
concurrent users, both MDS2 GRIS and GIIS present 
good scalability and performance if they keep data in 
cache. On the other hand, their performance degrades 
dramatically without data caching. The NetLogger 
instrumentation results show that a primary cause of 
the poor performance is either invoking the reported 
information provider or consulting the reported GRIS. 
We also find that the primary components of Grid 
middleware must be available at well-connected sites, 
because of the high load seen in the experiments we 
evaluated. 

In our future work, we plan to do more experiments 
to address other characteristics of MDS2 GRIS and 
GIIS with NetLogger instrumentation, for example, 
how the performance of a GRIS scales with the 
amount of data it contains. We also plan to compare 
the MDS2 performance with other Grid middleware in 
the same category, such as R-GMA[1] and 
Hawkeye[7]. 
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